
Summarising Smooth Information Criterion (SIC) Fits
Source:R/smoothic_functions.R
summary.smoothic.Rd
summary
method class “smoothic
”
Usage
# S3 method for smoothic
summary(object, ...)
Arguments
- object
an object of class “
smoothic
” which is the result of a call tosmoothic
.- ...
further arguments passed to or from other methods.
Value
A list containing the following components:
model
- the matched model from thesmoothic
object.coefmat
- a typical coefficient matrix whose columns are the estimated regression coefficients, estimated standard errors (SEE) and p-values.plike
- value of the penalized likelihood function.
Examples
# Sniffer Data --------------------
# MPR Model ----
results <- smoothic(
formula = y ~ .,
data = sniffer,
family = "normal",
model = "mpr"
)
summary(results)
#> Call:
#> smoothic(formula = y ~ ., data = sniffer, family = "normal",
#> model = "mpr")
#> Family:
#> [1] "normal"
#> Model:
#> [1] "mpr"
#>
#> Coefficients:
#>
#> Location:
#> Estimate SE Z Pvalue
#> intercept_0_beta 0.742017 0.921733 0.8050 0.176466
#> tanktemp_1_beta -0.089265 0.040390 -2.2100 0.001228 **
#> gastemp_2_beta 0.226331 0.028111 8.0514 < 2.2e-16 ***
#> tankpres_3_beta 0 0 0 0
#> gaspres_4_beta 5.199452 0.836829 6.2133 < 2.2e-16 ***
#>
#> Scale:
#> Estimate SE Z Pvalue
#> intercept_0_alpha -0.647524 0.724492 -0.8938 0.1427
#> tanktemp_1_alpha 0 0 0 0
#> gastemp_2_alpha 0.056681 0.011276 5.0268 8.045e-13 ***
#> tankpres_3_alpha 0 0 0 0
#> gaspres_4_alpha 0 0 0 0
#>
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Penalized Likelihood:
#> [1] -310.6329
#> IC Value:
#> [1] 621.2658